
Microservices and DevOps

DevOps and Container Technology
Distributed Computing

Henrik Bærbak Christensen

Distributed System

• Why?

– To speed up computation

• Google search, and a few other cases

– To share information

• Everything else! (Slight exaggeration!)

CS@AU Henrik Bærbak Christensen 2

A MultiStage Approach

• This whole fagpakke is a basically about distributed

systems

– (Part of the definition of Microservices)

• We will approach it in stages

– The Basics send and receive network package

– Broker Pattern Object Oriented Style

– REST Data/Resource centric Style

– Microservices Well…

– Arch. Qualities Availability, Testability, Scalability…

CS@AU Henrik Bærbak Christensen 3

“Limitation”

• We will stay in an important ”niche”

CS@AU Henrik Bærbak Christensen 4

Client-server Architectures using Remote Procedure Call

… this niche covers quite a few systems in practice 

Security

• Distributed systems means Security…

– There may be actors whose intentions are not good 

• Architecturally, security is quite a pain in our context…

– Because security techniques are one big set of hard bindings and

strong coupling

• You need certificates that tie you to a specific DNS name

– Certificate stores, key pair generation, trust chains, yaga yaga

• We will cover standard techniques but…

– Likely disable it quite a lot

– Not cover more specialized techniques

CS@AU Henrik Bærbak Christensen 5

The History

• Birrell and Nelson, 1984:

– “allow calling procedure on remote machines”

– A calls procedure f on B means

• A suspends, information on f is transmitted to B

• B executes the f procedure

• B sends the result back to A

• A resumes

CS@AU Henrik Bærbak Christensen 6

Initial Glimpse

SkyCave

Case Study: SkyCave

• SkyCave is a

– Massive multi-user online, exploration and creation experience

with a bit of social networking

– … with a horrible user interface

– … and high disregards for security

• Learn that somewhere else…

• Inspired by the very first ‘interactive fiction’ game for a

computer: Colossal Cave Adventure

– Will Crowder, 1972

• I played my first game in 1986

CS@AU Henrik Bærbak Christensen 8

The History

CS@AU Henrik Bærbak Christensen 9

So: Let the player move east…

CS@AU Henrik Bærbak Christensen 10

Broker: Let a ‘player.move(d)’ method on the
client side be ”transparently” translated into a

‘player.move(d)’ on the server side…

On the Server Side

CS@AU Henrik Bærbak Christensen 11

Issues in Distribution

Why is it hard?

Challenge

• How guys like me like to code:

• Which is then something like:

CS@AU Henrik Bærbak Christensen 13

Challenge

• However - networks only support two asynch functions!

• Which is not exactly the same as

CS@AU Henrik Bærbak Christensen 14

Issues (at least!)

• Send/receive is a too low level a programming model

• Send() does not wait for a reply from server (Asynch)

• Reference to object on my machine does not make

sense on remote computer (memory address)

• Networks does not transfer objects, just bits

• Networks are slow

• Networks and Remote computers may fail

• Networks are insecure, others may pick up our data

CS@AU Henrik Bærbak Christensen 15

Performance QA

Availability QA

Security QA

Performance

• Just how much slower is a network call compared to a

local in-JVM memory call?

• Imagine that your next trip to the supermarket for a soda

was 275 times slower???

– 10 minutes walk versus 46,8 hours walking 

CS@AU Henrik Bærbak Christensen 16

Elements of a Solution

• On the ‘happy path’, we need to

– Make the client invoke a synchronous method call on a remote

player object using only network send/receive

• That is, the client blocks until server has returned reply

– Keep our OO programming model: player.move(‘east’);

• That is invoke specific method on specific remote object

– Convert method call and parameters into bits to send it, and

convert it back again

• That is, convert Enum/Object/Array into bits and back again

– Locate the remote right player object

• That is, invoke method on object Mikkel, not object Magnus !

CS@AU Henrik Bærbak Christensen 17

Elements Overview

• Solutions are

– Request/Reply Protocol

• Simulate synchronous call (solves (partly) concurrency issue)

– Marshalling

• Packing objects into bits and back (solves data issue)

– Proxy Pattern (and Broker pattern)

• Simulate method call on client (solves programming model issue)

– Naming Services

• Use a registry/name service (solves remote location issue)

CS@AU Henrik Bærbak Christensen 18

Request/Reply

The Protocol

• Known from every WWW access you have ever made…

CS@AU Henrik Bærbak Christensen 20

Pairing Send/Receives

• Client does

– Send() and

receive

• Server does

– Receive() and

send()

• Roles

– Client is active – initiate action

– Server is reactive – awaits actions and then reacts

CS@AU Henrik Bærbak Christensen 21

Marshalling

Or Serialization

CS@AU Henrik Bærbak Christensen 22

Definitions

CS@AU Henrik Bærbak Christensen 23

Two Basic Approaches

• There are two approaches

– Binary formats

• Google ProtoBuf, propriatary

– Textual formats

• XML, JSON, propriatary

• Exercise: Costs? Benefits?

CS@AU Henrik Bærbak Christensen 24

JSON blood pressure

And we need more

• As we can send only bits, we also need to marshal

information about the method and object id!

CS@AU Henrik Bærbak Christensen 25

Note

• Marshalling is fine for atomic datatypes (int, String,

double, array, …) but…

• What about object references?

– inventory.addCustomer(c) where c is Customer object?

• Java RMI can do such things, but it is complex

– Naming schemes, registries of implementing classes, dynamic

class loading, …

• FRDS.Broker only support server hold references

– I.e. a server never calls an object on a client! ClientServer!!!

CS@AU Henrik Bærbak Christensen 26

The Details

• Pass by reference

– The Java style for all objects

– You do not get the ”Hello” string, you get a reference to it!

– public void say(String s);

• Pass by value

– Java does this for primitive types, like int and double

– You do get the value itself

– public void deposit(double amount);

CS@AU Henrik Bærbak Christensen 27

In C and C++

• In C and C++ you can actually do both

– If the first call adds 10 to value, what happens to value at the call

site?

• int v = 7; fooByValue(v); print(v);

– If the second call adds 10 to value, what happens to value at the

call site?

• int v = 7; fooByRef(&v); print(v);

CS@AU Henrik Bærbak Christensen 28

In Our Broker

• The semantics change in our Broker Pattern

– localObject.say(”Hello”) localObject pass by reference

– remoteObject.say(”Hello”) remoteObject pass by value

• Exercise: Why?

CS@AU Henrik Bærbak Christensen 29

Our Broker only supports pass by value!
Server objects are pass by ID.

JSON Libraries

Libraries

• Every distributed system in the world needs to marshall!

• Thus – lots of marshalling libraries around 

– Do NOT do it yourself!!!

• String json = ”{ name: ”+ object.name+ ”}…

• JSON I have used many libraries

– Json-simple

– Jackson JSON

– Gson

CS@AU Henrik Bærbak Christensen 31

Gson

• Gson is the most compact I have used

– (But have had trouble with ‘date’ objects that marshalls incorrectly!)

• It allows easy marshalling of record types

– Also known as

• PODO: Plain Old Data Objects,

• DTO: Data Transfer Object

• Record type (Pascal) / ‘struct’ (C) / ”bean” (java)

– No complex methods, only set/get methods with no side effects

– Must have a default constructor

• That is: A pure data object, just storing information

– Akin a ‘resource’ in REST terminology, by the way

CS@AU Henrik Bærbak Christensen 32

Example:

• toJson(obj)

– Marshall

• fromJson(str, type.class)

– Demarshall, using given type

CS@AU Henrik Bærbak Christensen 33

Proxy

Example

• TeleMedProxy

CS@AU Henrik Bærbak Christensen 35

Client Server

Network
call

Note

• The algorithm of all methods in the proxy will be the same

– Marshall parameters, send, await reply, demarshall, return

• Can be auto generated – this is what RMI does

• We will hand-code it, because

– It actually makes sense if you want very strict control of

architectural attributes like availability, testability, performance

• Which are major learning goals in this course

CS@AU Henrik Bærbak Christensen 36

Why QAs

• Why? One Example:

• You have a lot of accessor methods, and a single mutator

– i.e. state only changes when mutator is invoked!

• RMI will autogenerate proxy (send/receive) for every

method

• That is, every accessor method call will generate network

traffic!

• Performance Antipattern: Chatty interface

• Pattern: Chunky interface

– All accessors just return cached state in the proxy instance itself!

CS@AU Henrik Bærbak Christensen 37

Name Services

Name Services

• If I do not know, I know someone who does…

– If I do not know the telephone number of X, I know someone who

does

• Old days: Telephone book

• More modern days: krak.dk, linked in, facebook, whatever

• DNS: Domain Name Servers

CS@AU Henrik Bærbak Christensen 39

Name Services

• Name Services are actually just a fancy name for a

Map<Key, Value> data structure which allows me to

associate a name/key with an object

– DNS: I have ‘www.imhotep.dk’ as key, please give me the IP

address of the associated computer

– RMI Registry: I have this name ‘/sensor/temperature/47’, please

give me a remote reference so I can talk with the remote object

• These are server based solutions

– You contact a server that keeps the (key,value) database

CS@AU Henrik Bærbak Christensen 40

Local Name Services

• For a single server system, you do not need an external

name service, you can keep the (key,value) in the

(memory of) the server

• E.g SkyCave does just keep a (playerId, player) mapping

at hand…

– Any upcall of a player method, will lookup in the name service,

retrieve the player object, and do the method call on that

particular object.

– Exercise: Liabilities

• Hint: Horizontal scaling?

CS@AU Henrik Bærbak Christensen 41

Summary

• The Broker Pattern combines

– Request/Reply protocol

– Marshalling

– Proxy pattern

– Naming Systems

• … to produce something that (on happy days)

• Allows an Object Oriented Programming model to apply

to distributed computing

CS@AU Henrik Bærbak Christensen 42

